Math 2050, HW 5

Q1. Suppose $f: \mathbb{R} \rightarrow \mathbb{R}$ is a continuous function and $S=\{x \in \mathbb{R}$: $f(x)=0\}$. Show that S is closed in the sense that if $x_{n} \in S$ and $x_{n} \rightarrow x$, then $x \in S$.
Q2. Suppose $f: \mathbb{R} \rightarrow \mathbb{R}$ is a continuous functions such that

$$
f\left(m 2^{-n}\right)=m 2^{-n}
$$

for all $m \in \mathbb{Z}, n \in \mathbb{N}$. Show that $f(x)=x$ for all $x \in \mathbb{R}$.
Q3. Using the ε, δ terminology to show that
(a)

$$
\lim _{x \rightarrow 2} \sqrt{\frac{2 x+1}{x+3}}=1
$$

(b)

$$
\lim _{x \rightarrow 1} \frac{x^{2}-3 x}{x+3}=\frac{-1}{2}
$$

Q4. Show that the following limit does not exist

$$
\lim _{x \rightarrow 0} \sin \left(\frac{1}{x^{2}}\right)
$$

Q5. If $f: A \rightarrow \mathbb{R}_{\geq 0}$ and c is a cluster point of A so that f has a limit $L \geq 0$ at c. Show that \sqrt{f} has limit \sqrt{L} at c.

